
Symmetry Analysis and Quantization in

Discrete Dynamical Systems

V.V. Kornyak

e-mail: kornyak@jinr.ru, Laboratory of Information Technologies, JINR, Dubna

Introduction
Discrete systems are widespread in applications.

In particular, many nanostructures are symmetric
discrete formations. From a fundamental point of
view, there are many philosophical and physical ar-
guments that discreteness is more suitable for de-
scribing physics at small distances than continuity
which arises only as approximation or as a logi-
cal limit in considering large collections of discrete
structures. We consider here deterministic and non-
deterministic dynamical systems with non-trivial
symmetries defined on discrete spaces and evolving
in discrete time. As a tool for our study we are de-
veloping programs in C based on computer algebra
and computational group theory methods.

Basic constituents of discrete models
The following constructions form the basis for all

types of dynamical systems under study:
1. Space X is a k-valent graph with symmetry

group G = Aut(X) — space symmetries.
2. Vertices x of X take values in a set Σ with

symmetry group Γ ≤ Sym (Σ) — internal sym-
metries.

3. States of the whole system are functions σ(x) ∈
ΣX .

4. We define whole system symmetry groups W —
unifying space G and internal Γ symmetries —
as equivalence classes of split group extensions
of the form

1 → ΓX → W → G → 1 . (1)

5. Action of the group W splits the set of states
ΣX into orbits of different sizes:

ΣX =
⊔

i

Oi .

6. Evolution proceeds in discrete time t ∈ Z =
{. . . ,−1, 0, 1, . . .} .

7. Dynamics is determined by some evolution
rule connecting the current state σt(x) of the
system with its prehistory σt−1(x), σt−2(x),
σt−3(x), . . .

For models with locally defined evolution rules —
such as, e.g., cellular automata or Ising model — the
group of local symmetries Gloc is essential. Gloc is
defined as a stabilizer of x in G: Gloc = StabG (x) .

Local rules are defined on orbits of Gloc on edges
from the neighborhoods of points x. Fig. 1 shows
the symmetry groups G and Gloc ≤ G for some
carbon and hydrocarbon molecules.

Let us give an explicit description of the whole
symmetry group W. Equivalence classes in (1) are
determined by arbitrary antihomomorphisms µ :
G → G. The equivalence is described by arbitrary
function κ : G → G. Note that the standard direct
ΓX × G and wreath Γ �X G products are obtained
from this general construction by choosing µ(a) = 1
and µ(a) = a−1, respectively. As to the arbitrary
function κ, the choices κ(a) = 1 and κ(a) = a−1,

respectively, are generally used in the literature.

Tetrahedrane C4H4

G = Sym(4)
Gloc = D6

∼= Sym(3)

Cubane C8H8

G = Z2 × Sym(4)
Gloc = D6

Dodecahedrane C20H20

G = Z2 × Alt(5)
Gloc = D6

Fullerene C60

G = Z2 × Alt(5)
Gloc = Z2

Toric graphene n × m
G = Dn × D2m G = (Z × Z) � D6

n, m → ∞Gloc = Z2 Gloc = D6

n = 6

m
=

4

Figure 1: Symmetries of 3-valent (hydro)carbon
nanostructures

Deterministic and non-deterministic dy-
namics

Evolution rule of a deterministic (or causal) dy-
namical system is a functional relation. This means
that the current state is a function of the prehistory:

σt (x) = F (σt−1 (x) , σt−2 (x) , σt−3 (x) , . . .) . (2)

Cellular automaton is a typical example of the de-
terministic dynamical system. The causality im-
poses several restrictions on the system dynam-
ics [1]. In particular, for the first orderfunctional
relations:
• dynamical trajectories pass group orbits in non-

decreasing order of orbit sizes,
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• periodic trajectories lie within orbits of the
same size.

Mesoscopic lattice model is a sort of non-
deterministic dynamical system. This is a special
case of Markov chain. In mesoscopic lattice model
transition from one state to any other is possible
with probability controlled by a Hamiltonian.

Quantum system is another important type of the
non-deterministic dynamical system. The probabil-
ities of transitions between states are expressed in
terms of complex-valued transition amplitudes.

Soliton-like structures in deterministic dy-
namics

For deterministic dynamics recurrence of dynam-
ical trajectory to the same group orbit is typical.
Moreover, if the symmetry group W splits the state
set ΣX into a finite number of orbits (this is the case
for all systems we consider here), then after some
lapse of time any trajectory comes inevitably to a
cycle over some finite sequence of orbits. This just
means formation of soliton-like structures. Namely,
let us consider evolution

σt0(x) → σt1(x) = At1t0 (σt0(x)) . (3)
If the states at the moments t0 and t1 belong to
the same orbit : σt0(x) ∈ Oi and σt0(x) ∈ Oi, Oi ⊆
ΣX ; then evolution (3) can be replaced by the group
action

σt1 (x) = σt0(x)w, w ∈ W ,
i.e., the initial state σt0(x) is reproduced after some
“movement” in the space ΣX .

Several examples (including continuous cases) of
cycles over group orbits:
• running waves σ(x − vt) in mathematical

physics — Galilei group;
• “generalized coherent states” in quantum

physics — unitary representations of Lie
groups;

• “spaceships” in cellular automata — lattice
symmetries.

Fig. 2 illustrates formation of “glider” — one of
the “spaceships” in Conway’s cellular automaton
“Game of Life”.

Mesoscopic lattice models
Discrete symmetry analysis simplifies manipula-

tions with microcanonical ensembles and search of
phase transitions. This allows one to reveal subtle
details in behavior of mesoscopic models: in Fig. 3
in addition to distinct “convex intruder” — crite-
rion of phase transition adopted in mesoscopy —
denoted A computation detects subtle “intruder”
B.

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Figure 2: Example of a soliton-like structure.
“Glider” in Conway’s “Life”is a cycle in two orbits
of the square lattice symmetry group (semidirect
product of 2D translations and dihedral group D8):
configurations ϕ3 and ϕ4 are obtained from ϕ1 and
ϕ2, respectively, by the same combination of down-
ward shift, 90o clockwise rotation and reflection in
respect to vertical
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Figure 3: Ising model on dodecahedron. Micro-
canonical distribution and “convex intruders” indi-
cating mesoscopic phase transitions

Gauge connection and quantization
The Aharonov–Bohm effect (Fig. 4) is one of

the most striking illustrations of interplay between
quantum behavior and gauge connection. Charged
particles moving through the region containing per-
fectly shielded thin solenoid produce different inter-
ference patterns on a screen depending on whether
the solenoid is turned on or off. There is no electro-
magnetic force acting on the particles, but working
solenoid produces U(1)-connection adding or sub-
tracting phases of the particles and thus changing
the interference pattern.

In the discrete time Feynman’s path amplitude
decomposes into the product of elements of the fun-
damental representation of the group Γ = U(1):

AU(1) = exp (iS) = exp
(
i
∫

Ldt
)

−→ eiL0,1 . . . eiLt−1,t . . . eiLT−1,T .

(4)
By the notation Lt−1,t we emphasize that the La-
grangian is in fact a function defined on pairs of
points (graph edges) — this is compatible with
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Figure 4: Aharonov–Bohm effect. Magnetic flux
is confined within the perfectly shielded solenoid;
interference pattern is shifted in spite of absence of
electromagnetic forces acting on the particles

physics where the typical Lagrangians are depend
on the first order derivatives. Thus, the expression
P (t − 1, t) = eiLt−1,t ∈ U(1) can be interpreted as
U(1)-parallel transport. A natural generalization of
this is to suppose that:

• group Γ may differ from U(1),

• dimension of unitary representation ρ (Γ) may
differ from 1.

We can introduce a quantum mechanical descrip-
tion of a discrete system interpreting states σ ∈ Σ
as basis elements of a Hilbert space Ψ. This allows
one to describe statistics of observations of σ,s in
terms of the inner product in Ψ.

Now let us replace expression (4) for Feynman’s
path amplitude by the following parallel transport
along the path

Aρ(Γ) = ρ (α0,1) . . . ρ (αt−1,t) . . . ρ (αT−1,T ) .

Here αt−1,t are elements of a finite group Γ — we
shall call Γ quantizing group — and ρ is an unitary
representation of Γ on the space Ψ.

Recall that all linear representations of finite
groups are (equivalent to) unitary and all their char-
acters and eigenvalues are elements of the ring A

of algebraic integers. It is not difficult to show
[2] that algebraic integers are sufficient for all our
computations (except for normalization of proba-
bilities requiring the quotient field of the ring A).
Thus, with our approach the quantization becomes
a completely constructive procedure. On the other
hand, the standard Feynman’s quantization can be
approximated within our approach by taking 1-
dimensional representations of large enough finite
groups.

Simple model inspired by free particle
In quantum mechanics — as is clear from the

never vanishing expression exp
(

i
�
S

)
for the path

amplitude — transitions from one to any other state
are possible in principle. However we shall con-
sider computationally more tractable models with
restricted sets of possible transitions.

Let us consider quantization of a free particle
moving in one dimension. Such a particle is de-
scribed by the Lagrangian L = mẋ2

2 . Keeping only
transitions to the closest points in the discretized
space we come to the following rule for the one-
time-step transition amplitudes

x

x + 1

x

x − 1

w

1

w

e
i
�

m{(x+1)−x}2

2 = ei
m
2�

e
i
�

m(x−x)2

2 = 1

e
i
�

m{(x−1)−x}2

2 = ei
m
2� .

That is, we have the evolution rule as an U(1)-
valued function R defined on pairs of points (graph
edges). Symbolically:

R (x → x) = 1 ∈ U(1),

R (x → x − 1) = R (x → x + 1)

= w = ei
m
2� ∈ U(1). (5)

Now let us assume that w in (5) is an ele-
ment of some representation of a finite group:
w = ρ (α) , α ∈ Γ = {γ0 = 1, . . . , γM−1}. Rear-
ranging multinomial coefficients — trinomial in this
concrete case — it is not difficult to write the sum
amplitude over all paths of the form (0, 0) −→ (x, t)

At
x (w) =

t∑

τ=0

τ !(
τ−x

2

)
!
(

τ+x
2

)
!
× t!

τ ! (t − τ)!
wτ . (6)

Note that x must lie in the limits determined by t:
x ∈ [−t, t] .

One of the most expressive peculiarities of
quantum-mechanical behavior is the destructive in-
terference — cancellation of non-zero amplitudes
attached to different paths converging to the same
point. By construction, the sum of amplitudes in
our model is a function A(w) depending on distribu-
tion of sources of the particles, their initial phases,
gauge fields acting along the paths, restrictions —
like, e.g., “slits” — imposed on possible paths, etc.
In the case of one-dimensional representation the
function A(w) is a polynomial with algebraic integer
coefficients and w is a root of unity. Thus the con-
dition for destructive interference can be expressed
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by the system of polynomial equations: A(w) = 0
and wM = 1. For concreteness let us consider the
cyclic group Γ = ZM = {γ0, · · · , γk, · · · , γM−1}.
Any of its M irreducible representations takes the
form ρ (γk) = wk, where w is one of the Mth roots
of unity. For simplicity let w be the primitive root :
w = e2πi/M .

x x
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x

x ± 2

x

x ± 3
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Amplitude
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A3
0 = 1 + 6w2

6
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±2 = 3w2

1
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±3 = w3

Figure 5: Amplitudes for all possible paths in three
time steps

Fig. 5 shows all possible transitions (with their
amplitudes) from the point x in three time steps.
We see that the polynomial A3

±1 = 3w + 3w3 =
3w

(
w2 + 1

)
contains the cyclotomic polynomial

Φ4(w) = w2 + 1 as a factor. The smallest group
associated to Φ4(w) — and hence providing the de-
structive interference — is Z4. Thus, Z4 is the nat-
ural quantizing group for the model under consid-
eration.
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Figure 6: Group Z4. Interference from two sources
at points -4 and 4. Number of time steps T = 20.
Phase differences ∆φ = φ4 − φ−4 between sources
are 0 and π.

Fig. 6 shows interference patterns — normalized
squared amplitudes (“probabilities”) — from two
sources placed in the positions x = −4 and x = 4 for
20 time steps. The upper and lower graph show the
interference pattern when sources are in the same
(∆φ = 0) and in the opposite (∆φ = π) phases,
respectively.

Local quantum models on regular graphs
The above model — with quantum transitions al-

lowed only within the neighborhood of a vertex of
a 1-dimensional lattice — can easily be generalized

to an arbitrary regular graph. Our definition of lo-
cal quantum model on k-valent graph uncludes the
following:

1. Space X = {x1, · · · , xN} is a k−valent graph.

2. Set of local transitions Ei = {e0,i, e1,i, · · · , ek,i}
is the set of k adjacent to the vertex xi edges
em,i = (xi → xm,i) completed by the edge
e0,i = (xi → xi).

3. We assume that the space symmetry group
G = Aut (X) acts transitively on the set
{E1, · · · , EN}.

4. Gi = StabG (xi) ≤ G is the stabilizer of xi

(g ∈ Gi means xig = xi).

5. Ωi = {ω0,i, ω1,i, · · · , ωh,i} is the set of orbits of
Gi on Ei.

6. Quantizing group Γ is a finite group: Γ =
{γ0, · · · , γM−1}.

7. Evolution rule R is a function on Ei with val-
ues in some representation ρ (Γ). The rule R

prescribes ρ (Γ)-weights to the one-time-step
transitions from xi to elements of the neighbor-
hood of xi. From the symmetry considerations
R must be a function on orbits from Ωi, i.e.,
R (em,ig) = R (em,i) for g ∈ Gi.

To illustrate these constructions, let us consider the
local quantum model on the graph of buckyball. The
incarnations of this 3-valent graph include in par-
ticular:

• the Caley graph of the icosahedral group Alt(5)
(in mathematics);

• the molecule C60 (in carbon chemistry).

Here the space X = {x1, · · · , x60} has the

shape and its symmetry group is G =

Aut (X) = Z2 × Alt(5). The set of local tran-
sitions takes the form Ei = {e0,i, e1,i, e2,i, e3,i},
where e0,i = (xi → xi), e1,i = (xi → x1,i), e2,i =
(xi → x2,i), e3,i = (xi → x3,i) in accordance
with

xi

x1,i x2,i

x3,i

.

The stabilizer of xi is Gloc = StabG (xi) = Z2. The
set of orbits of Gloc on Ei contains 3 orbits: Ωi =
{ω0,i = {e0,i} , ω1,i = {e1,i, e2,i} , ω2,i = {e3,i}}, i.e.,
the stabilizer does not move the edges (xi → xi) and
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(xi → x3,i) and swaps (xi → x1,i) and (xi → x2,i) .

This asymmetry results from different roles the
edges play in the structure of the buckyball:
(xi → x1,i) and (xi → x2,i) are edges of a pen-
tagon adjacent to xi , whereas (xi → x3,i) sepa-
rates two hexagons; in the carbon molecule C60 the
edge (xi → x3,i) corresponds to the double bond,
whereas others are the single bonds.

The evolution rule takes the form:

R (xi → xi) = ρ (α0) ,

R (xi → x1,i) = R (xi → x2,i) = ρ (α1) ,

R (xi → x3,i) = ρ (α2) ,

where α0, α1, α2 ∈ Γ. If we take a one-dimensional
representation and move α0 — using gauge invari-
ance — to the identity element of Γ, we see that
the rule R depends on two elements v = ρ (α1) and
w = ρ (α2).

Thus the amplitudes in the quantum model on
the buckyball take the form A(v, w) depending on
two roots of unity. To search nontrivial quantizing
groups one should check ( by, e.g., Gröbner basis
computation) compatibility of the system of poly-
nomial equations A(v, w) = Φi(v) = Φj(w) = 0,
where Φi(v) and Φj(w) are cyclotomic polynomials.

Summary
We suggested an algorithmic approach based on

a discrete symmetry analysis and implemented in
C for construction and investigation of discrete dy-
namical models — deterministic, mesoscopic and
quantum. In particular, our approach is applica-
ble to simulation of nanostructures with nontriv-
ial symmetry properties. Important examples of
such nanostructures are (hydro)carbon molecules
like graphenes, fullerenes, etc.

We constructed a family of groups unifying space
and internal symmetries in a natural way. This con-
struction generalizes the standard direct and wreath
products.

We demonstrated that soliton-like moving struc-
tures — like “spaceships” in cellular automata —
arise inevitably in deterministic dynamical systems
whose symmetry group splits the set of states into
finite number of group orbits.

We proposed a method based on introduction of
gauge connection of a special kind for quantizing
discrete systems and constructed simple models for
studying properties of suggested quantization.

We hope that the discrete and finite background
allowing a comprehensive study may lead to a
deeper understanding of the quantum behavior and
its connection with symmetries, especially with
gauge symmetries, of systems. To study more
complicated models, we are developing C pro-
grams based on computer algebra and computa-
tional group theory methods.
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